新手教程-使用真机-云平台或者SDK#

用例描述#

通过旅行商问题(TravelingSalesmanProblem,TSP)展示从建模、提交Qubo矩阵到云平台、从云平台获取计算结果的全流程

方式一:通过云平台上传QUBO矩阵计算#

代码建模并生成qubo矩阵#

# Import distance matrix
w = np.array([[0, 1, 2],
              [1, 0, 0],
              [2, 0, 0]])

# Get the number of nodes
n = w.shape[0]

# Create qubo variable matrix
x = kw.qubo.ndarray((n, n), "x", kw.qubo.Binary)

# Get sets of edge and non-edge pairs
edges = [(u, v) for u in range(n) for v in range(n) if w[u, v] != 0]
no_edges = [(u, v) for u in range(n) for v in range(n) if w[u, v] == 0]

def is_edge_used(x, u, v):
    return kw.qubo.quicksum([x[u, j] * x[v, j + 1] for j in range(-1, n - 1)])

qubo_model = kw.qubo.QuboModel()
# TSP path cost
qubo_model.set_objective(kw.qubo.quicksum([w[u, v] * is_edge_used(x, u, v) for u, v in edges]))

# Node constraint: Each node must belong to exactly one position
qubo_model.add_constraint(x.sum(axis=0) == 1, "sequence_cons", penalty=5)

# Position constraint: Each position can have only one node
qubo_model.add_constraint(x.sum(axis=1) == 1, "node_cons", penalty=5)

# Edge constraint: Pairs without edges cannot appear in the path
qubo_model.add_constraint(kw.qubo.quicksum([is_edge_used(x, u, v) for u, v in no_edges]),
    "connect_cons", penalty=20)

qubo_mat = qubo_model.get_qubo_matrix()
pd.DataFrame(qubo_mat).to_csv("tsp.csv", index=False, header=False)

登录云平台上传矩阵#

  1. 登录光量子云计算平台后进入控制台,选择真机后点击新建任务

    ../_images/new_task.png
  2. 进入任务配置页面后,填写任务名称、上传矩阵,确认后点击下一步

    ../_images/new_task1.png
  3. 进入确认配置页面,确认任务和真机信息后点击确定按钮

    ../_images/new_task2.png
  4. 进入提交任务页面,显示提交成功

    ../_images/new_task3.png
  5. 返回控制台,任务正在校验中

    ../_images/new_task4.jpg
  6. 校验成功后任务进入排队中状态

    ../_images/new_task5.jpg
  7. 任务完成后点击详情进入结果详情页面

    ../_images/new_task6.png
  8. 查看结果详情(qubo解向量、qubo value演化曲线、任务执行时间等)

    ../_images/new_task7.png

方式二:直接使用SDK调用真机#

下面是同样一个TSP的问题,使用SDK直接调用真机求解的例子。 由于量子计算机有精度限制,例子中用SDK自带的PrecisionReducer进行精度适配。 想了解更多的关于精度的知识,

参见

import kaiwu as kw
import numpy as np

def solve_tsp():
    # 定义距离矩阵
    w = np.array([[0, 0, 1, 1, 0],
                  [0, 0, 1, 0, 1],
                  [1, 1, 0, 0, 1],
                  [1, 0, 0, 0, 1],
                  [0, 1, 1, 1, 0]])

    n = w.shape[0]  # 节点数量

    # 创建 QUBO 变量矩阵 (n x n)
    x = kw.qubo.ndarray((n, n), "x", kw.qubo.Binary)

    # 生成边集合和非边集合
    edges = [(u, v) for u in range(n) for v in range(n) if w[u, v] != 0]
    no_edges = [(u, v) for u in range(n) for v in range(n) if w[u, v] == 0]

    # 定义边使用判断函数
    def is_edge_used(x, u, v):
        return kw.qubo.quicksum([x[u, j] * x[v, (j + 1) % n] for j in range(n)])

    # 初始化 QUBO 模型
    qubo_model = kw.qubo.QuboModel()

    # 设置目标函数:最小化路径成本
    path_cost = kw.qubo.quicksum([w[u, v] * is_edge_used(x, u, v) for u, v in edges])
    qubo_model.set_objective(path_cost)

    # 添加约束条件
    # 节点约束:每个节点必须占据一个位置
    qubo_model.add_constraint(x.sum(axis=0) == 1, "node_cons", penalty=5)

    # 位置约束:每个位置必须有一个节点
    qubo_model.add_constraint(x.sum(axis=1) == 1, "pos_cons", penalty=5)

    # 边约束:非连接边不得出现
    qubo_model.add_constraint(
        kw.qubo.quicksum([is_edge_used(x, u, v) for u, v in no_edges]),
        "edge_cons", penalty=5
    )

    # 配置求解器, 需要替换 user_id 和 sdk_code
    optimizer = kw.cim.CIMOptimizer(user_id="YOUR_USER_ID",sdk_code="YOUR_SDK_CODE", task_name="tsp_task")
    optimizer = kw.cim.PrecisionReducer(optimizer, 8)  # 8位精度
    solver = kw.solver.SimpleSolver(optimizer)

    # 求解问题
    sol_dict, qubo_val = solver.solve_qubo(qubo_model)

    # 验证结果
    if sol_dict is not None:
        # 验证结果
        unsatisfied, res_dict = qubo_model.verify_constraint(sol_dict)
        print(f"未满足约束数: {unsatisfied}")
        print(f"约束项值: {res_dict}")

        # 计算路径成本
        path_cost = kw.qubo.get_val(qubo_model.objective, sol_dict)
        print(f"实际路径成本: {path_cost}")

if __name__ == "__main__":
    solve_tsp()