kaiwu.preprocess package#
Module contents#
Module: preprocess
Function: Preprocessing related functions, currently mainly for precision related functions of ising matrices
- kaiwu.preprocess.calculate_ising_matrix_bit_width(ising_matrix, bit_width=8)#
Calculate the parameter bit width of the ising matrix
- Args:
ising_matrix (np.ndarray): ising 矩阵
bit_width (int): Maximum bit width limit
- Returns:
Dict: Returns the precision and scaling factor of the Ising matrix
precision (int): Ising矩阵精度
Multiplier (float): scaling factor
- Example 1:
>>> import numpy as np >>> import kaiwu as kw >>> _matrix = -np.array([[ -0., 127., -12., -5.], ... [127., -0., -12., -12.], ... [-12., -12., -0., -9.], ... [ -5., -12., -9., -0.]]) >>> kw.preprocess.calculate_ising_matrix_bit_width(_matrix) {'precision': 8, 'multiplier': 1.0}
- Example 2 (meets the requirements after scaling):
>>> import numpy as np >>> import kaiwu as kw >>> _matrix = -np.array([[ -0., 12.7, -1.2, -0.5], ... [12.7, -0., -1.2, -1.2], ... [-1.2, -1.2, -0., -0.9], ... [-0.5, -1.2, -0.9, -0.]]) >>> kw.preprocess.calculate_ising_matrix_bit_width(_matrix) {'precision': 8, 'multiplier': 10.0}
- Example 3 (also does not meet the requirements after scaling):
>>> import numpy as np >>> import kaiwu as kw >>> _matrix = -np.array([[-488., 516., -48.], ... [ 516., -516., -48.], ... [ -48., -48., 60.]]) >>> kw.preprocess.calculate_ising_matrix_bit_width(_matrix) {'precision': inf, 'multiplier': inf}
- kaiwu.preprocess.adjust_ising_matrix_precision(ising_matrix, bit_width=8)#
Adjust the accuracy of the ising matrix. After adjusting the matrix through this interface, there may be a large loss of accuracy. For example, when one number of the matrix is much larger than the other numbers, the adjusted matrix accuracy loss is serious and cannot be used.
- Args:
ising_matrix(np.ndarray): 目标矩阵
bit_width (int): Precision range, currently only supports 8 bits, one bit is the sign bit
- Returns:
np.ndarray: 符合精度要求的 ising 矩阵
- Examples:
>>> import numpy as np >>> import kaiwu as kw >>> ori_ising_mat1 = np.array([[0, 0.22, 0.198], ... [0.22, 0, 0.197], ... [0.198, 0.197, 0]]) >>> ising_mat1 = kw.preprocess.adjust_ising_matrix_precision(ori_ising_mat1) >>> ising_mat1 array([[ 0, 127, 114], [127, 0, 114], [114, 114, 0]]) >>> ori_ising_mat2 = np.array([[0, 0.22, 0.198], ... [0.22, 0, 50], ... [0.198, 50, 0]]) >>> ising_mat2 = kw.preprocess.adjust_ising_matrix_precision(ori_ising_mat2) >>> ising_mat2 # The solutions obtained by qubo_mat2 and ori_qubo_mat2 matrices are quite different array([[ 0, 1, 1], [ 1, 0, 127], [ 1, 127, 0]])
- kaiwu.preprocess.get_dynamic_range_metric(mat)#
Calculate dynamic range (DR)
- Args:
mat : Ising or QUBO matrix
- Returns:
float: dynamic range
- Examples:
>>> import numpy as np >>> mat = np.array([[0, 8, 1 ,1], ... [0, 0, 2, -1], ... [0, 0, 0, -8], ... [0, 0, 0, 0]]) >>> import kaiwu as kw >>> kw.preprocess.get_dynamic_range_metric(mat) 4.0
- kaiwu.preprocess.get_min_diff(mat)#
Calculate the minimum difference
- Args:
mat : Ising or QUBO matrix
- Returns:
float: minimum difference
- Examples:
>>> import numpy as np >>> mat = np.array([[0, 8, 1 ,1], ... [0, 0, 2, -1], ... [0, 0, 0, -8], ... [0, 0, 0, 0]]) >>> import kaiwu as kw >>> kw.preprocess.get_min_diff(mat) 1
- kaiwu.preprocess.lower_bound_parameters(ising_mat)#
The sum of the absolute values of all coefficients is negative, which determines the lower bound of the Ising model Hamiltonian
- Args:
ising_mat (np.ndarray): Ising matrix
- Returns:
float: lower bound of the Hamiltonian
- Examples:
>>> import numpy as np >>> import kaiwu as kw >>> mat = np.array([[0, 18, -12], ... [18, 0, 1], ... [-12, 1, 0]]) >>> lb = kw.preprocess.lower_bound_parameters(mat) >>> lb -62
- kaiwu.preprocess.upper_bound_sample(ising_matrix, steps=10)#
Estimating the upper bound of the Hamiltonian based on sampling
- Args:
ising_matrix (np.ndarray): Ising matrix
steps (int): steps
- Returns:
float: upper bound of the Hamiltonian
- Examples:
>>> import numpy as np >>> import kaiwu as kw >>> mat = np.array([[0, 18, -12], ... [18, 0, 1], ... [-12, 1, 0]]) >>> ub = kw.preprocess.upper_bound_sample(mat)
- kaiwu.preprocess.upper_bound_simulated_annealing(ising_matrix)#
Estimating the upper bound of the Hamiltonian based on simulated annealing
- Args:
ising_matrix (np.ndarray): Ising matrix
- Returns:
float: upper bound of the Hamiltonian
- Examples:
>>> import numpy as np >>> import kaiwu as kw >>> mat = np.array([[0, 18, -12], ... [18, 0, 1], ... [-12, 1, 0]]) >>> ub = kw.preprocess.upper_bound_simulated_annealing(mat)
- kaiwu.preprocess.perform_precision_adaption_mutate(ising_matrix, iterations=100, heuristic='greedy', decision='heuristic')#
Iteratively reduce the dynamic range of the Ising matrix, changing one coefficient each time to keep the optimal solution unchanged. Mücke et al. (2023).
- Args:
ising_matrix (np.ndarray): Ising matrix
iterations (int, optional): number of iterations, default is 100
heuristic (str, optional): Heuristic method for determining the amount of coefficient change, including ‘greedy’ and ‘order’. Default is ‘greedy’
decision (str, optional): The method to determine the next modification position. Includes ‘random’ and ‘heuristic’. ‘heuristic’ will give priority to variables that directly affect the dynamic range. The default is ‘heuristic’.
- Returns:
np.ndarray: Ising matrix of compression parameters
- Examples:
>>> import numpy as np >>> mat0 = np.array([[0, -20, 0, 40, 1.1], ... [0, 0, 12240, 1, 120], ... [0, 0, 0, 0, -10240], ... [0, 0, 0, 0, 2.05], ... [0, 0, 0, 0, 0]]) >>> import kaiwu as kw >>> kw.preprocess.perform_precision_adaption_mutate(mat0) array([[ 0. , -2.05, 0. , 2.05, 0. ], [ 0. , 0. , 4.1 , 0. , 0. ], [ 0. , 0. , 0. , 0. , -2.05], [ 0. , 0. , 0. , 0. , 2.05], [ 0. , 0. , 0. , 0. , 0. ]])
- kaiwu.preprocess.perform_precision_adaption_split(ising_matrix: ndarray, param_bit=8, min_increment=None, penalty=None, round_to_increment=True)#
Split the variables so that the coefficient range of the QUBO expression is reduced and can be expressed using the required number of bits
- Args:
ising_matrix (np.ndarray): Ising matrix
param_bit (int): The number of bits that can be used by the Ising matrix elements, indicating the parameter precision of the matrix. The default value is 8
min_increment (float): The minimum change in matrix elements, indicating the resolution of the transformed matrix. The default value is the minimum positive value of the difference between matrix elements.
penalty (float): penalty coefficient, default is min_increment * (2^(param_bit-1) - 1)
round_to_increment (bool): Convert all elements of the matrix to integer multiples of min_increment so that they can be expressed in no more than param_bit bits.
- Returns:
- tuple: returns a tuple containing the new matrix and variable indices
np.ndarray: new matrix containing the reduced range
np.ndarray: The first position of the variable after the variable is split
- Examples:
>>> import numpy as np >>> import kaiwu as kw >>> mat = np.array([[0, 18, -12], ... [18, 0, 1], ... [-12, 1, 0]]) >>> kw.preprocess.perform_precision_adaption_split(mat, param_bit=5, min_increment=1, penalty=4) (array([[ 0., 4., 3., 5., -6.], [ 4., 0., 5., 5., -6.], [ 3., 5., 0., 4., 0.], [ 5., 5., 4., 0., 1.], [-6., -6., 0., 1., 0.]]), array([1, 3, 4]))
- kaiwu.preprocess.restore_splitted_solution(solution, last_var_idx)#
Convert the solution of the reduced range polynomial back to the solution of the original expression
- Args:
solution(np.ndarray): the solution found
last_var_idx(np.ndarray): The last position of each variable after splitting
- Returns:
np.ndarray: solution of the original polynomial
- Examples:
>>> import kaiwu as kw >>> import numpy as np >>> mat = np.array([[0, -15, 0, 30], ... [-15, 0, 0, 2], ... [0, 0, 0, 0], ... [30, 2, 0, 0]]) >>> r, f = kw.preprocess.perform_precision_adaption_split(mat, 5, min_increment=0.5, round_to_increment=True) >>> worker = kw.classical.SimulatedAnnealingOptimizer() >>> output = worker.solve(r) >>> opt = kw.sampler.optimal_sampler(r, output, bias=0, negtail_ff=False) >>> sol = opt[0][0] * opt[0][0, -1] >>> kw.preprocess.restore_splitted_solution(sol, f) array([ 1, -1, -1, 1], dtype=int8)
- kaiwu.preprocess.construct_splitted_solution(solution, last_var_idx)#
After splitting the original matrix into variables to reduce the parameter precision, the solution of the new matrix is constructed based on the solution of the original matrix.
- Args:
solution (np.ndarray): solution of the original matrix
last_var_idx (np.ndarray): The last position of each variable after splitting
- Returns:
np.ndarray: solution to the new matrix
- Examples:
>>> import numpy as np >>> import kaiwu as kw >>> mat = np.array([[0, -15, 0, 40], ... [-15, 0, 0, 2], ... [0, 0, 0, 0], ... [40, 2, 0, 0]]) >>> nmat, tail = kw.preprocess.perform_precision_adaption_split(mat, 5, min_increment=0.5, ... round_to_increment=True, ... penalty=0) >>> sol = np.array([1, 1, -1, -1]) >>> ans = np.array([1, 1, 1, 1, -1, -1, -1, -1]) >>> kw.preprocess.construct_splitted_solution(sol, tail) array([ 1., 1., 1., 1., -1., -1., -1., -1.])